Immunotargeting of glucose oxidase: intracellular production of H2O2and endothelial oxidative stress.

نویسندگان

  • Andrew J Gow
  • Frank Branco
  • Melpo Christofidou-Solomidou
  • Linda Black-Schultz
  • Steven M Albelda
  • Vladimir R Muzykantov
چکیده

Extracellular and intracellular reactive oxygen species attack different targets and may, therefore, result in different forms of oxidative stress. To specifically study an oxidative stress induced by a regulated intracellular flux of a defined reactive oxygen species in endothelium, we used immunotargeting of the H2O2-generating enzyme glucose oxidase (GOX) conjugated with an antibody to platelet-endothelial cell adhesion molecule (PECAM)-1, an endothelial surface antigen. Anti-PECAM-125I-GOX conjugates specifically bind to both endothelial and PECAM-transfected cells. Approximately 70% of cell-bound anti-PECAM-125I-GOX was internalized. The cell-bound conjugate was enzymatically active and generated H2O2from glucose. Use of the fluorescent dye dihydrorhodamine 123 revealed that 70% of H2O2was generated intracellularly, whereas 30% of H2O2was detected in the cell medium. Catalase added to the cells eliminated H2O2in the medium but had little effect on the intracellular generation of H2O2by anti-PECAM-GOX. Both H2O2added exogenously to the cell medium (extracellular H2O2) and that generated by anti-PECAM-GOX caused oxidative stress manifested by time- and dose-dependent irreversible plasma membrane damage. Inactivation of cellular catalase by aminotriazole treatment augmented damage caused by either extracellular H2O2or anti-PECAM-GOX. Catalase added to the medium protected either normal or aminotriazole-treated cells against extracellular H2O2, yet failed to protect cells against injury induced by anti-PECAM-GOX. Therefore, treatment of PECAM-positive cells with anti-PECAM-GOX leads to conjugate internalization, predominantly intracellular H2O2generation and intracellular oxidative stress. These results indicate that anti-PECAM-GOX 1) provides cell-specific intracellular delivery of an active enzyme and 2) causes intracellular oxidative stress in PECAM-positive cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs.

Vascular immunotargeting is a novel approach for site-selective drug delivery to endothelium. To validate the strategy, we conjugated glucose oxidase (GOX) via streptavidin with antibodies to the endothelial cell surface antigen platelet endothelial cell adhesion molecule (PECAM). Previous work documented that 1) anti-PECAM-streptavidin carrier accumulates in the lungs after intravenous injecti...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Short-term exposure of high glucose concentration induces generation of reactive oxygen species in endothelial cells: implication for the oxidative stress associated with postprandial hyperglycemia.

Recent studies demonstrating a close relationship between postprandial hyperglycemia and the incidence of atherosclerotic cardiovascular disease prompted us to investigate the generation and source of reactive oxygen species (ROS) in endothelial cells stimulated by short-term exposure to a high glucose concentration. In addition, we investigated the effect of insulin on ROS production induced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 277 2  شماره 

صفحات  -

تاریخ انتشار 1999